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Abstract

This paper describes computer simulations and experimental results of stress relaxation carried out in polymethyl methacrylate (PMMA).

The results are analysed in terms of the RT model proposed earlier. The main theoretical result is that transitions of side-groups, or parts

thereof, can account for approximately 10% of stress relaxation. The experimentally observed relaxation strength in a time of approximately

3 h at 50 K below Tg is of the order of 40–60%. These facts provide conclusive evidence that cooperative motions of main chain segments are

responsible for most of the stress relaxation. A qualitative model for stress relaxation due to chain twisting is described and shown capable of

large stress losses. q 2002 Published by Elsevier Science Ltd.
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1. Introduction

The recent book on ‘Group Interaction Modelling of

Polymer Properties’ [1] is an indication of the importance of

this field of research in both academic and practical sense.

However, the understanding of mechanical relaxations in

amorphous polymers is still incomplete due to the

inadequacy of quantitative models based on structural

information. A number of publications [2–6] point to the

need for a better relationship between the polymer structure

and the corresponding relaxation’s strength and time

spectrum. A novel approach, based on measured and

characterised polymer nano-structure, arose with the

improvements of computer simulations of amorphous

polymers [7,8]. In a previous publication, a so-called RT

model was proposed for mechanical relaxation in an un-

oriented, isotropic amorphous polymer, which contains

chains with rotating side-groups [9]. A relationship for the

stress relaxation modulus was derived, expressed in the

following general form:

Erelaxðt;T ;VÞ ¼ EUðT ;VÞ2 DEðVÞ £ Hðt;T ;VÞ ð1Þ

where EU is the unrelaxed value of the modulus, and the

variables in the round brackets indicate functional depen-

dence on time t, temperature T, and structure V. The

maximum relative relaxation strength for a specific motion,

DE/EU (for t ! 1), was derived from the geometry of

packing of individual side-groups capable of stress

relaxation, and its value was predicted in terms of molecular

parameters as follows:

DE

EU

¼
1

p
£

�d
�F
£

�VNAS

�Vmon

ð2Þ

Both, the second and third terms include quantities

measured from the nano-structure of the polymer (albeit

only simulated at this stage). The detailed relationships for

the dependence of the relaxation spectrum on time, and on

specific nano-structural features characteristic of the state of

the polymer, were expressed as follows:

Hðt; T ;VÞ ¼
XN
i¼1

piðtRÞ 1 2 exp 2
t

ðtRÞi

� �� �
ð3Þ

tRðT ; xÞ ¼ t0 exp
Q1

kBT

� �
exp

q2=x

kBT

� �
ð4Þ

where pi is the fractional relaxation strength associated with

an ith relaxation time, subject to the normalization:
P

pi ¼ 1

for i ¼ 1 to N. The structural parameter, x ¼ ðVmon 2 V0Þ=V0;

is a subset of V. The latter quantity is not defined
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specifically at this stage. N is the number of discrete

relaxation times, and each discrete relaxation time is a

function of temperature. The constant, t0, is the quantum

time constant of oscillations of the atomic group around a

fixed bond, Q1 is the activation energy for rotational

relaxation unrestricted by neighbouring chain segments (i.e.

isolated chain in solution), and finally, q2 is the additional

activation energy due to the presence of neighbouring chain

segments (i.e. due to polymer structure). The sum, Q1 þ

q2=x; is the energy activation barrier, Ebarrier.

The relaxation modulus shows manifold dependencies:

(i) a one-dimensional dependence on time, (ii) a two-

dimensional dependence on temperature (through relaxation

times and density), and (iii) a three-dimensional dependence

on structure (through relaxation strength in Eq. (2),

dependence on fractional strength pi; and on the parameter,

x, in Eq. (4). The model lends itself to quantitative

calculations and predictions based on results from simulated

polymer cells, and the results included here allow some

verification of the model and several significant conclusions

to be made.

2. Computer simulation of amorphous PMMA cell

2.1. Amorphous cell and Voronoi tessellation

Following the method of Suter et al. [10], amorphous

polymer cells were simulated using Materials Studio

software (Molecular Simulations Inc., San Diego, USA).

An amorphous PMMA cell at a density of 1.12 g/cm3, with a

cube edge length of 3.55 nm, was formed at 328 K (approx.

50 8C below Tg) comprising three chains with 100

monomers each (MW ¼ 10 012), a total of 4602 atoms.

First, the three chains were generated in a stretched

conformation by the use of the default polymer builder.

Next, the amorphous cell was constructed from an initial

density of 0.6 g/cm3 and minimized in size towards the

target density. Short molecular dynamics (MD) runs were

carried out within the same process. This roughly

equilibrated structure was further minimized in 5000 steps

before the full MD run with approximately 80,000 steps

(0.08 ns).

Analysis of the conformations of all monomers showed

that the ester groups were in the ‘folded’ position, that is, the

C–O bond is in the trans position and the terminal methyl

group is situated between the two oxygen atoms. This is in

accordance with published NMR measurements [11]. The

average potential energy of the simulated PMMA was

61.8 kJ/mol and stayed within (0.5% during the last 30 ps of

the simulation, indicating a structure in adequate equili-

brium. The potential energy is slightly higher than that

quoted in literature (57 kJ/mol), which could be due to the

configuration of the simulated cell.

PMMA has four identifiable side-group motions, as

shown in Fig. 1; each can contribute an RT-type relaxation.

Voronoi tessellation for all atoms was carried out using a

specially written software routine [12]. The Voronoi

volumes of each monomer, and each side-group, or part

thereof, were calculated by adding up the volumes of their

respective atoms. Some of the results are shown in Figs.

2–4. Fig. 2 shows the Voronoi volumes for each of the

monomers for the three chains. The horizontal lines indicate

(from top) average monomer volume: (i) at Tg, (ii) at 328 K,

and (iii) extrapolated to absolute zero (0 K). There appears

to be an underlying periodicity in the variation of volume,

with an amplitude of the order of 20 £ 1023 nm3, with

superimposed random spikes, both positive and negative,

reaching approximately from 121 £ 1023 nm3 up to as high

as 197 £ 1023 nm3. The frequency distribution is shown in

Fig. 3. Such an inhomogeneity at the nano-scale of atomic

dimensions can be expected to result from considerations of

the geometry and topology of randomly packed chains of

limited flexibility [13]. The Voronoi volumes for each of the

methyl groups of both type, and each of the COOCH3 side-

groups for the three chains, are shown in Fig. 4(a)–(c). The

Voronoi volumes of hydrogen and oxygen atoms, although

not included here, also show similar variations with

underlying apparent periodicity as well as randomness.

Similarity can be observed between the graphs in Figs. 2 and

4, even though the side groups, being on the outside of the

chain, can participate more directly in sharing the inter-

chain space where free volume is to be found. The average

Voronoi volumes, and the Van der Waals volumes of

selected molecular assemblies, are summarized in Table 1.

2.2. Molecular parameters

The average monomer Voronoi volume for PMMA at

328 K is 148.2 £ 1023 nm3. The monomer length was

measured and found to be 0.274(^0.001) nm; the average

chain diameter was calculated to be, F ¼ 0.769 nm. The net

atomic sets (NAS) for each rotating side-group were

identified. It was assumed that when a group flips from

one site to another, it always rotates by 1808, which yields

the maximum local stress relaxation. For group No. 1, 2H

rotate around C–C bond and exchange place with H,

Fig. 1. The four side-group rotational motions on PMMA monomer that can

contribute to mechanical stress relaxation through the RT mechanism [9].
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therefore NAS ¼ H. For group No. 2, 2H rotate around O–

C bond and exchange place with H, therefore NAS ¼ H. For

group No. 3, CH3 rotates around C–O bond and exchanges

place with void space, therefore NAS ¼ CH3. For group No.

4, O–CH3 rotates around the C–C bond and exchanges

place with Oy, therefore (to a good approximation)

NAS ¼ CH3. The list of the side-groups and their associated

NAS parameters is given in Table 2.

Table 1

Voronoi and van der Waals volumes of selected atomic groups in PMMA

Group Voronoi (Å3) van der Waals (Å3)

V328 V0 VVdW

Monomer 148.4 135.2 93.1

–COOCH3 78.3 71.3 47.9

CH3 in –COO–CH3 46.8 42.6 22.7

CH3 on main chain 39.3 35.8 22.7

V328 determined by Voronoi tessellation, V0 calculated Voronoi volume

by application of volumetric thermal expansion coefficient of 2.7 £ 104 K,

VVdW: Van der Waals volumes obtained from vanKrevelen [29].

Fig. 2. Sequential monomer Voronoi volumes for the three PMMA chains. The horizontal lines indicate average volumes (from top): at 378 K (Tg), at 328 K

(simulation temperature), and at 0 K (extrapolated).

Fig. 3. Distribution of monomer Voronoi volumes obtained from the data in

Fig. 2.
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The average displacement vector, d, is the vector from

the centre of the Voronoi volume of a NA set in site 1 to its

new site 2, after a rotation of 1808. The calculation of d

requires the knowledge of the distance between the centre of

the Voronoi volume and the atoms of the side-group, the

orientation of the centre with respect to the side-group, and

the change in orientation and distance after the rotation.

Since these values cannot be derived form our data, we have

used simplified estimations based on the following assump-

tions:

1. The Voronoi volume is in the shape of a sphere and is

attached to the Van der Waals volume, VVdW, of the NA

set (also represented by a sphere) in such a way that it

encloses VVdW and points outwards with respect to the

monomer.

2. For both methyl-groups and for the OCH3 group, the

Fig. 4. On the left-hand side, Voronoi volumes for side groups on PMMA monomers. On the right-hand side, ratios of the side group Voronoi volumes to

corresponding monomer Voronoi volumes.

Table 2

Geometric and mechanical parameters for NAS in PMMA

RT motion NAS VNAS (Å3) VNAS/Vmon d (Å) DE/E

1 H 12.05 0.081 2.4 0.81 £ 1022

2 H 14.62 0.098 2.6 1.05 £ 1022

3 CH3 46.8 0.316 2.7 3.52 £ 1022

4 CH3 46.8 0.316 3.2 4.17 £ 1022
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centre is assumed to be on the elongation of the bond

between the side-group and the atom it is attached to. The

bond length is then taken to be (Vmon/VVdW)21/3 times the

initial bond length.

3. The CH3 for the rotation of the COOCH3 group is

supposed to be in the folded position, i.e. it is in the plane

spanned by the COO and situated between the two

oxygen. Given a straight line perpendicular to the

longitudinal monomer axis and through the NA set, the

centre of the Voronoi volume is then estimated to be on a

circle with radius extending from the centre of the NA set

atoms and under an angle of 08 to 908 away from the

double-bonded oxygen. This leads to an increment of the

displacement vector (measured from the initial atom

centre to the new one) of about 0 to 0.22 £ (Vmon/

VVdW)21/3 nm. Since the angle is not known precisely, an

average increment of 0.1 £ (Vmon/VVdW)21/3 was chosen.

A summary of the relevant molecular parameters is

shown in Table 2.

3. Experimental measurement of stress relaxation

3.1. Materials and methods

The PMMA material was made by ICI as cast sheet

(2.8 £ 2000 £ 2500 mm3) and purchased from a selling

agent for Australia. The specimens, in the shape of standard

samples (ASTM D638), were mill-cut from the PMMA

plate. The plates had been annealed at room temperature for

over 10,000 h so that a good equilibrium of the material can

be assumed. A specimen was typically 2.8 mm thick with a

width of 20 mm at both ends and 12.8 mm in the middle.

The gauge length was 50 mm. The relaxation and tensile

tests were carried out on a universal testing machine

(Instron 4505). One of the crucial factors of relaxation

experiments is the control of temperature. A special box

with heater was built to run experiments at elevated

temperatures. The temperature was monitored with a

thermocouple on each side of and close to the specimen.

To obtain a uniform temperature, a small fan was placed in

the box, pointing from the up-right corner towards the

bottom. In addition, an aluminium sheet was placed in front

of the heater to prevent the current of hot air blowing

directly at the specimen. The heater was connected to a

Variac transformer that allowed control of temperature in

the box by adjusting the voltage. With this set-up it was

possible to keep the temperature within 1 8C during the

experiments.

3.2. Relaxation measurements

The relaxation experiments were carried out at a

temperature of 328 K. The box and the specimen were

preheated for 1–2 h. The box was opened, the specimen

inserted into the clamps and the window closed again. The

stress on the specimen that had been applied during the

tightening of the clamps, was eliminated by slowly moving

the crosshead until the stress dropped below 1 MPa. It was

kept between ^1 MPa (corresponding to approx. ^5 N

force) until the default temperature was reached again,

which took about 5–8 min. Then, the test was started.

The crosshead was moved downwards with a speed of

50 mm/min until the prior set extension was reached. A

5 kN load cell was used with an accuracy of 0.5% of

indicated load. The elongation was measured by the

movement of the crosshead with an accuracy of 0.1%. No

extensometer was used. The displacement was usually held

for 3 h and the stress was recorded with a rate of 12.5 pts/s

for the first minute, and then reduced by a factor of 18,

exploiting the maximum amount of sampling points (8000).

Fig. 5 shows a typical result of the stress relaxation

modulus, which is in agreement with previously published

data.

4. Application of the RT model to PMMA

4.1. Maximum relaxation strength

Substitution of the appropriate data appearing in Table 2

into Eq. (2) leads to the following calculation for the

relaxation strength due to CH3 net atomic set group (motion

4, rotation of the ester group around the C–C bond,):

DE

E
¼

1

p
£

0:32

0:769
£

46:8

148:4
¼ 4:2 £ 1022 ð5Þ

Fig. 5. Relaxation modulus of PMMA as a function of log(time). Measured

curve from stress relaxation experiment (at a strain of 4%). Predicted curve

from Eqs. (1)–(4) and data from Tables 2 and 3. The unrelaxed value of the

relaxation modulus was assumed as 1 GPa at t ¼ 0; and T ¼ 0 K.
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This represents the maximum possible relaxation strength

due to rotation of the whole ester group. Similar

calculations, carried out for the remaining three possible

RT motions, yielded the values shown in the last column of

Table 2. Assuming that the relaxation strengths for each RT

motion are additive, the sum of the four is close to 0.096.

This means that relaxation by all side-groups in an

amorphous, isotropic PMMA can account for nearly 10%

drop of the unrelaxed modulus (at sufficiently long time).

The value of the unrelaxed modulus can be obtained by

theoretical calculations [14], or from experimental measure-

ments [15]. Since the aim here is to demonstrate the

predictive ability of the model, rather than any specific

values, then the actual precise value is not important, and a

nominal value of 1 GPa was chosen.

4.2. Relaxation spectrum and modulus

The predicted modulus decay shows a very broad

relaxation over the time interval from 1 to 104 s (,3 h).

At the shortest measured time the relaxation modulus has

already dropped to approximately 0.98 GPa due to relax-

ations of the methyl groups (motions 1 and 2), which have a

very short relaxation time (Table 3). At the longest time of

104 s, the modulus has lowered to a value of 0.92 GPa,

indicating that most of the stress decay by motions 3 and 4

have taken place, but not completely. The long-term tail of

the relaxation spectrum, particularly for motion 4, stretches

far into the 1010 s region, therefore providing some

resistance to complete relaxation at 104 s.

Thirty eight discrete fractional relaxation strengths were

derived from the distribution of Voronoi volumes shown in

Fig. 3 by segregating the volumes into bins of 5 £ 1023 nm3

size. These were used in Eq. (4) to calculate relaxation times

and the corresponding relaxation time spectrum. To

calculate relaxation times it was necessary to obtain values

for t0, Q1, and q2. In principle, all of these quantities can be

derived by quantum mechanical approach [16]. We have

assumed t0 to be a temperature independent constant. The

actual value for the methyl groups was taken from

Nicholson and Davies [6] to be 6.5 £ 10212 s. The other

values, shown in Table 3, were adjusted in proportion to the

rotational moments of inertia of the atomic groups, and must

be taken as approximate. Since thermal motions are

neglected, the method will almost certainly overestimate

the effects of neighbouring segments [6]. Eq. (1) has been

evaluated using either time or temperature as variable. Fig. 5

shows the simulated stress relaxation modulus as a function

of time at a constant temperature (328 K), and Fig. 6 shows

the variation of the simulated stress relaxation modulus as a

function of temperature at a constant time of 10 s. The

methyl groups give a slight drop around 100 K, whereas

motions of the ester groups show a significant relaxation

from 200 K. These appear to correspond approximately with

the a and b relaxations as indicated by the peaks of the

negative derivative.

4.3. Voronoi tessellation

Looking at Fig. 2 one can observe that at some points

along the molecular chain the monomers are constricted to

volumes well below those corresponding to a crystalline

state, even if extrapolated to 0 K. Others are surrounded by

significant excess volume, well above the average value at

Tg. The distribution function of the monomer Voronoi

volumes, shown in Fig. 3, yields the mean of the distribution

at V ¼ 148.2 £ 1023 nm3, and its mode at

V ¼ 135 £ 1023 nm3. The lowest Voronoi monomer

volume was recorded at 121 £ 1023 nm3, and the highest

at 197 £ 1023 nm3. Such variations have been observed on

simulated structures published before [17–19], and have

some experimental verification from PALS [20]. Intuitively,

Table 3

Molecular dynamic parameters for net atomic (NA) sets in PMMA

RT motion Q1 (kcal/mol) q2 (kcal/mol) t0 (s) tR(x ¼ 1) (s) tR(x ¼ 0.15) (s)

1 2.1 0.4 6.5 £ 10212 2.2 £ 10210 2.3 £ 10210

2 2.1 0.4 6.5 £ 10212 2.2 £ 10210 2.3 £ 10210

3 10 2.0 42.3 £ 10212 7.3 £ 1024 1.2 £ 1023

4 12 2.0 109 £ 10212 5.3 £ 1022 8.7 £ 1022

Fig. 6. Predicted relaxation modulus of PMMA as a function of temperature

(top curve), and the derivative (bottom curve). Relaxation of modulus due

to side-groups motions only, in accordance with the RT model [9].
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we are inclined to accept that this nano-structure has close

resemblance to that existing in real amorphous polymers

(which at present cannot be measured to the degree required

for verification), and that it is characteristic of the

amorphous state. Thus, Voronoi tessellation provides a

method of describing the structure, analogous in some way

to crystallography for ordered solids. Fig. 4 includes the

calculated Voronoi volumes for the three parts of mono-

mers, as indicated. We were surprised to discover that the

ratios of the atomic subgroup’s Voronoi volumes to the

monomer Voronoi volumes give slightly different but

qualitatively the same variations and distributions.

5. Discussion

5.1. Viscoelastic models for stress relaxation

Calculations of the type shown above, have been carried

out extensively in the 1960s by Ferry and many other

researchers, who studied viscoelastic behaviour of poly-

mers. Box and wedge relaxation spectra had been applied

empirically, or their shape derived from experimental data

with the use of Alfrey’s approximation [21]. More recently,

a different approach was taken by Glen and Edward [22],

who used a single relaxation time model for each of the a, b,

and g relaxations, and then applied Gaussian smear to each

line, thus achieving a broad relaxation behaviour in good

agreement with experiment. The Gaussian broadening can

be understood as representing physically the effect of the

random thermal motions.

An approach to simulations of stress relaxation from the

MD point of view confirms the long held view of

cooperative motions, and of changing distribution of

relaxation times under deformation. MD simulations

carried out on simple 2D models of polymers and metals

indicate the existence of clusters [4,22], i.e. the dynamic

motion of an atomic set is influenced by its immediate

surrounding neighbours, providing support to the notion of

the energy barrier having two components (Q1 and q2).

Studies of the normal modes in polymer chains with freely

jointed and/or retarded internal rotation show a split in

relaxation times occurring as soon as the chain is deformed

[5]. In a non-deformed equilibrium state, the relaxation of

normal modes proceeds independent of each other. With

increasing deformation, the parallel and perpendicular

relaxation times both decrease and begin to differ. This

result also indicates the complex nature of the dynamic

environment. A study most closely related to the work

presented here, is the modelling of methyl group rotations

in PMMA [6]. Whereas the RT model describes the

micromechanics of relaxation, the paper by Nicholson and

Davies elaborates on the dynamics of the methyl group in

an amorphous cell created by the same modelling tools

[23]. The most important result (for us) is that transitions

between the three sites were observed and that distribution

of the transition rates was wide. Another important result

was that activation energy barriers were affected by

neighbouring chains and that as the density of the polymer

was increased (hydrostatic compression) the distribution

broadened. In some cases, the pressure exerted by

surroundings caused a decrease of the activation barrier.

Since the barrier is expressed as the difference in potential

energy levels, such an effect is physically admissible and

probable. This effect has also been described by Bicerano

[3]. It is not entirely in line with the hypothesis put forward

here that the energy barrier varies reliably with changes in

structure expressed simply by the structural parameter, x,

and it is evident that the structural dependence may be

more complex. In the first approach to this problem, the

structural parameter relates to the Voronoi volume of the

monomer. However, a particular rotating group, attached

to that monomer, has its own (smaller) Voronoi volume.

The dynamics of this group will be more directly

associated with the smaller Voronoi volume rather than

the overall monomer Voronoi volume, and consequently

the structural parameter should be expressed in these new

terms. This has been tried using the data in Fig. 4, and

found not to affect significantly the final results.

A physical method for apportioning of the energy

activation barrier into the Q1 and q2 components should

be based on: (i) the relative intra- and inter-chain surface

area, and (ii) the strength of the interactions across the

surface. This can be quantified by means of the group

Voronoi polyhedron, of which individual faces can be

identified as intra-chain or external, and by an appropriate

coefficient of elastic interactions across the faces. In one

respect the RT model is fundamentally different to those

described in the above-mentioned publications, in that the

relaxation time spectrum (including its shape) has been

derived entirely from nano-structural information obtained

through Voronoi tessellation and a mathematical model

relating it to relaxation parameters. This is, therefore,

physically a much more realistic model.

5.2. Chain twisting—motion type 5

Consider a small but representative element of the

polymer sample, as shown in Fig. 7, subjected to an applied

extensional strain, 1appl. Any arbitrary length of the

molecular chain is elongated or compressed along with

the volumetric deformation of the sample. Such elongation

will result in bending and twisting of the chain length as a

consequence of it following a random, coiled configuration.

A random coil subjected to affine deformation will suffer in

general stretching (or compression), bending, and torsion.

Maximum torsion will occur in sections which are at a

greatest distance from the axis of the applied force, and

whose normal vector is orthogonal to the vector parallel to

the direction of maximum elongation (maximum principal

stretch). Therefore, segments of every chain in amorphous

polymers will suffer twisting when the polymer sample is
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subjected to an extension. The twisting will encounter

elastic resistive force resulting from the torsional stiffness of

the chain and from the elastic reaction of the matrix.

After a characteristic time, tR, a twist relaxation will

have taken place in a polymer chain. The corresponding

molecular rearrangement will result in stress relaxation of a

corresponding magnitude. If the twist transition occurs in a

segment that is at a radius, rg, from the axis of coil tension,

then the ‘internal strain’, D10, which contributes to the stress

relaxation, is given to a good approximation by:

D10 ø a £
rg

L
£

Achain

Asample

for ap 1 ð6Þ

where the prime above D1 indicates internal strain due to

one chain only, a is the angle of twist experienced by the

segment at radius rg, and Achain and Asample are cross-

sectional areas of the chain and sample, respectively. The

ratio of the areas represents the concentration, CA, of the

relaxation events. The radius, rg, is related to Lc, the contour

length of the chain, and L is shown in Fig. 7. A simple

function incorporating this relationship is as follows:

rg ¼ F £
Lc

L
2 1

� �
ð7Þ

For a Gaussian coil, Lc ¼ nl0; and L ¼ l0

ffiffi
n

p
: Substitution

into Eq. (6) gives:

D10 ø a £
F

l0

£ 1 2
1ffiffi
n

p

� �
£

Achain

Asample

ð8Þ

The ratio, F=l0 ø 1; is constant for a given polymer, and for

large n the second term in the round brackets can be

neglected, giving the internal strain per single chain directly

related to the angle of twist. Clearly, twisting at segments

less than rgðmaxÞ is inefficient from the mechanics point of

view. We note that for an imposed (applied) strain of the

order of 1022, each chain need twist in only one segment by

1022 radian (approx 0.68) to comply with the deformation.

Assuming that a number of chains in the sample can

contribute to the extensional internal strain by similar twist

transformation, then the strength of stress relaxation can be

related to this mechanism as follows:

DEðtÞ

EU

¼
aðtÞCA

1appl

ð9Þ

The development of a mathematical formulation for the

maximum relaxation strength by this mechanism, and the

associated relaxation spectrum, has not been completed yet.

There are, however, strong reasons to believe that is it

related to the existence of the density of constriction points

in the microstructure of amorphous polymers, as described

previously [13]. The constriction points divide each

macromolecular chain into relatively short segments (for

PMMA approximately nine monomers). It is the relaxations

within these segments, involving motions 5, 6 and 7, that are

responsible for the remaining 50% drop in the modulus,

observed in Fig. 6, in addition to the 10% drop due to the

RT-motions.

5.3. Structural dependence of stress relaxation

Until not so long ago, the understanding of relaxation

phenomena was in terms of concepts such as the crank-shaft

and Schottky rotations [24,25], or chair-transition [26,27]

and others, all derived from the physical behaviour of

isolated chains. The development and use of advanced

computer simulation for amorphous polymer cells has

changed that view. Simulations of deformation in amor-

phous polymers failed to confirm large-scale molecular

transition [28]; instead the considerations of the complex

inter-chain interactions has revealed the possibility of a

multitude of local metastable positions in the potential

energy phase-space. The equation below shows one

comprehensive way to describe the interactions between

the atoms in polymer chains [7]:
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The first four terms reflect the potential energy required to

stretch bonds, bend angles, rotate torsion angles, and distort

planar atoms out of plane. The next five terms are cross

terms that account for interactions between the four types of

Fig. 7. A representative volume of the polymer sample showing single

chain in random coil configuration. On extension, the chain can

accommodate the deformation by a twist through an angle, a, at a radius rg.
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internal coordinates. The last term represents the non-

bonded interactions between neighbouring chain segments.

Although it is the third term which is primarily involved in

twisting of the chain, all of the other interactions will be

involved to a greater or lesser degree. In other words, the

twist need not be a major conformational transition, quite

unlikely to happen at infinitesimal strains. More likely is an

event where slight twisting of the chain may trigger

rotations of the side-groups by the RT mechanism, leading

to a change in the angle, a, small enough not to cause

isomeric transition, but sufficient to relax the stress and

dissipate elastic stored energy. A related and accompanying

mechanism for relaxation is the motion of type 6 and 7 in

which a segment of the chain slips through a constriction

around it. When relaxation by twisting of the chain occurs,

the segment subjected to direct tension (Fig. 1) will need to

slip past its neighbours to yield the internal strain, D10. This

provides for a gradual, and seemingly continuous mechan-

ism, for decay of the applied stress. From the above

discussion, one can infer that stress relaxation should occur

for as long as chain coils are able to undergo twist motions.

One may therefore ask the questions (i) why do amorphous

polymers show relaxation strength of the order of 40–60%

in a reasonable time interval, and not 100%, (ii) what is the

molecular mechanism which prevents complete stress

relaxation to zero, and consequently, (iii) why does the

organic glass behave as a viscoelastic solid rather than a

viscoelastic liquid. We propose that the answer to these

questions can be found in the structural and topological

features of amorphous polymers. Fig. 2 shows that there is a

significant number of PMMA monomers with Voronoi

volumes, Vmon, below the average value, and some are

significantly below the crystalline value. In a previous

publication one of the authors referred to these features as

points of constriction [13]. These constitute a memory

network in the relatively compliant matrix. Such constric-

tions provide limitations on the propagation of the motions

5, 6 and 7, thus imposing a limit on the amount of internal

strain that the structure is capable of at temperatures not too

far below the glass transition temperature.

6. Conclusions

Motions of side-groups, whilst clearly associated with

specific mechanical relaxations (a, b), cannot be entirely

and solely responsible for each relaxation. Yet, the motion

of side groups is intimately associated with these relax-

ations. The much quoted molecular mechanisms, such as the

crank-shaft motion [24,25], or the phenyl ring chair to twist-

boat transition [26], or any other small atomic set motion,

cannot account for the observed losses in the value of the

relaxation modulus.

Voronoi tessellation provides an effective and widely

accepted method for characterising amorphous polymers at

the nano-structural level, and provides means for evaluating a

quantitative relationship between the phenomenon of mech-

anical relaxation and the structural state of the polymer.
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